Efficient Subspace Segmentation via Quadratic Programming
نویسندگان
چکیده
We explore in this paper efficient algorithmic solutions to robust subspace segmentation. We propose the SSQP, namely Subspace Segmentation via Quadratic Programming, to partition data drawn from multiple subspaces into multiple clusters. The basic idea of SSQP is to express each datum as the linear combination of other data regularized by an overall term targeting zero reconstruction coefficients over vectors from different subspaces. The derived coefficient matrix by solving a quadratic programming problem is taken as an affinity matrix, upon which spectral clustering is applied to obtain the ultimate segmentation result. Similar to sparse subspace clustering (SCC) and low-rank representation (LRR), SSQP is robust to data noises as validated by experiments on toy data. Experiments on Hopkins 155 database show that SSQP can achieve competitive accuracy as SCC and LRR in segmenting affine subspaces, while experimental results on the Extended Yale Face Database B demonstrate SSQP’s superiority over SCC and LRR. Beyond segmentation accuracy, all experiments show that SSQP is much faster than both SSC and LRR in the practice of subspace segmentation.
منابع مشابه
A TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD
The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...
متن کاملA Fast Projection Method for Connectivity Constraints in Image Segmentation
We propose to solve an image segmentation problem with connectivity constraints via projection onto the constraint set. The constraints form a convex set and the convex image segmentation problem with a total variation regularizer can be solved to global optimality in a primal-dual framework. Efficiency is achieved by directly computing the update of the primal variable via a projection onto th...
متن کاملSemi–Monotonic Augmented Lagrangians for Optimal Control and Parameter Identification
Optimization and inverse problems governed with partial differential equations are often formulated as constrained nonlinear programming problems via the Lagrange formalism. The nonlinearity is treated using the sequential quadratic programming. A numerical solution then hinges on an efficient iterative method for the resulting saddle–point systems. In this paper we apply a semi–monotonic augme...
متن کاملMinimizing a Quadratic Over a Sphere
A new method, the sequential subspace method (SSM), is developed for the problem of minimizing a quadratic over a sphere. In our scheme, the quadratic is minimized over a subspace which is adjusted in successive iterations to ensure convergence to an optimum. When a sequential quadratic programming iterate is included in the subspace, convergence is locally quadratic. Numerical comparisons with...
متن کاملAn Adaptive Subdivision Scheme for Quadratic Programming in Multi-Label Image Segmentation
We address the problem of efficient, globally optimal multi-label image segmentation. Transforming the discrete labeling problem into a [0,1]-relaxed binary quadratic program we are able to solve arbitrary convex quadratic labeling tasks in polynomial time. Although this guarantees efficiency in a theoretical sense, large-scale quadratic programs that arise from relaxation can rarely be used fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011